Antigen- Properties, Types and Determinants of Antigenicity

 What is Antigen ............?


 Definition :- 

Antigen Any substance (usually foreign) that binds specifically to an antibody or a T-cell receptor; often is used as a synonym for immunogen. 


Fig :- Antigen

 Fig :- Difference between antigen and antibody . 

Chemical Nature of Antigens (Immunogens)

 a. Proteins :- 

The vast majority of immunogens are proteins. These may be pure proteins or they may be glycoproteins or lipoproteins. In general, proteins are usually very good immunogens.

 b. Polysaccharides:- 

 Pure polysaccharides and lipopolysaccharides are good immunogens.

c. Nucleic Acids:- 

 Nucleic acids are usually poorly immunogenic. However, they may become immunogenic when single stranded or when complex with proteins.

 d. Lipids:-

 In general lipids are non-immunogenic, although they may be haptens.

Types of Antigen:- 

 A) On the basis of order of their class (Origin)

 1. Exogenous antigens :- 

These antigens enters the body or system and start circulating in the body fluids and trapped by the APCs (Antigen processing cells such as macrophages, dendritic cells, etc.)

 2. Endogenous antigens :- 

 These are body’s own cells or sub fragments or compounds or the antigenic products that are produced Examples: Blood group antigens, HLA (Histocompatibility Leukocyte antigens), etc.

 3. Autoantigens :- 

An autoantigen is usually a normal protein or complex of proteins (and sometimes DNA or RNA) that is recognized by the immune system of patients suffering from a specific autoimmune disease.

 Examples: Nucleoproteins, Nucleic acids, etc. 

B) On the basis of immune response 

1. Complete Antigen or Immunogen :- 

 Posses antigenic properties denovo, i.e. ther are able to generate an immune response by themselves.

 - High molecular weight (more than 10,000) .

- May be proteins or polysaccharides.

2. Incomplete Antigen or Hapten :- 

 Haptens are small molecules that can bind to antibodies but cannot by themselves induce an immune response.

These are the foreign substance, usually non-protein substances Unable to induce an immune response by itself, they require carrier molecule to act as a complete antigen.

 - The carrier molecule is a non-antigenic component and helps in provoking the immune response. Example: Serum Protein such as Albumin or Globulin.

 - Low Molecular Weight (Less than 10,000) 

- Haptens can react specifically with its corresponding antibody.

 - Examples: Capsular polysaccharide of pneumococcus, polysaccharide “C” of beta haemolytic streptococci, cardiolipin antigens, etc.


Property of antigens:- 

 1. Foreignness :- 

An antigen must be a foreign substances to the animal to elicit an immune response.

 2. Molecular Size :- 

The most active immunogens tend to have a molecular mass of 14,000 to 6,00,000 Da. Examples: tetanus toxoid, egg albumin, thyroglobulin are highly antigenic. Insulin (5700 ) are either non-antigenic or weakly antigenic. 

3. Chemical Nature and Composition :- 

In general, the more complex the substance is chemically the more immunogenic it will be. Antigens are mainly proteins and some are polysaccharides. It is presumed that presence of an aromatic radical is essential for rigidity and antigenicity of a substance.

 4. Physical Form :- 

In general particulate antigens are more immunogenic than soluble ones. Denatured antigens are more immunogenic than the native form.

5. Antigen Specificity:- 

 Antigen Specificity depends on the specific actives sites on the antigenic molecules (Antigenic determinants). Antigenic determinants or epitopes are the regions of antigen which specifically binds with the antibody molecule.

 6. Species Specificity:- 

 Tissues of all individuals in a particular species possess, species specific antigen. Human Blood proteins can be differentiated from animal protein by specific antibody reaction.

 7. Organ Specificity:- 

 Organ specific antigens are confined to particular organ or tissue. Certain proteins of brain, kidney, thyroglobulin and lens protein of one species share specificity with that of another species. 

8. Auto-specificity:- 

 The autologous or self antigens are ordinarily not immunogenic, but under certain circumstances lens protein, thyroglobulin and others may act as autoantigens.

 9. Genetic Factors:- 

 Some substances are immunogenic in one species but not in another .Similarly, some substances are immunogenic in one individual but not in others (i.e. responders and non responders).

 The species or individuals may lack or have altered genes that code for the receptors for antigen on B cells and T cells. 

They may not have the appropriate genes needed for the APC to present antigen to the helper T cells. 

10. Age :- 

Age can also influence immunogenicity.

 Usually the very young and the very old have a diminished ability to elicit and immune response in response to an immunogene.

 11. Degradability:- 

 Antigens that are easily phagocytosed are generally more immunogenic.

This is because for most antigens (T-dependant antigens) the development of an immune response requires that the antigen be phagocytosed, processed and presented to helper T cells by an antigen presenting cell (APC).

 12. Dose of the antigen:- 

 The dose of administration of an immunogen can influence its immunogenicity. There is a dose of antigen above or below which the immune response will not be optimal.

 13. Route of Administration:- 

 Generally the subcutaneous route is better than the intravenous or intragastric routes. The route of antigen administration can also alter the nature of the response. Antigen administered intravenously is carried first to the spleen, whereas antigen administered subcutaneously moves first to local lymph nodes. 

14. Adjuvants:- 

 Substances that can enhance the immune response to an immunogen are called adjuvants. The use of adjuvants, however, is often hampered by undesirable side effects such as fever and inflammation. 

Example: aluminum hydroxide.






Post a Comment

0 Comments